Like quadratics in standard form (which a quadratic is also a polynomial) the y intercept is the constant since a y-intercept has the coordinate point ($0, \mathrm{y}$) ; we simply substitute in 0 for all x values which will leave us with just the constant:

For example: the y-intercept of $y=5 x^{7}+3 x^{5}-x^{2}+11$ is $(0,11)$. And if we are given the function graphically we simply look for where the graph crosses the y-axis.

X-intercept are a little harder especially algebraically (we will look at that a different time). Here you will only be asked to look at a graph and determine the x-intercepts.

For x-intercept look at where the graph crosses the x-axis. The number of x-intercepts is less than or equal to the degree of the polynomial (\# of x-int. $\leq n$ where n is the degree)

This quadratic has two real x-intercepts which matches the degree.

This quadratic appears to have one real x intercept; however, it gets counted twice (we just don't write it twice. $y=x^{2}=x \cdot x$ each x produces a zero just the same

This quadratic has no real roots;
however, it does have two imaginary roots. If we solved $y=x^{2}+$ 1 we would produce an imaginary

Notice the number of roots whether real or imaginary add up to the degree.

