X-intercepts, Multiplicities, and Y-intercepts

Like quadratics in standard form (which a quadratic is also a polynomial) the y-
intercept is the constant since a y-intercept has the coordinate point (0,y); we simply
substitute in O for all x values which will leave us with just the constant:

For example: the y-intercept of y = 5x” + 3x®> —x? + 11 is (0, 11). And if we are given
the function graphically we simply look for where the graph crosses the y-axis.

X-intercept are a little harder especially algebraically (we will look at that a different
time). Here you will only be asked to look at a graph and determine the x-intercepts.

For x-intercept look at where the graph crosses the x-axis. The number of x-intercepts
is less than or equal to the degree of the polynomial
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This quadratic has
two real x-intercepts
which matches the
degree.
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This quadratic
appears to have
one real x-
intercept;
however, it gets
counted twice (we
just don’t write it
twicey =x?2 =x-x
each x produces a
zero just the same
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This quadratic has
no real roots;
however, it does have
two imaginary roots.
If we solved y = x? +
1 we would produce
an imaginary

Notice the number of roots whether real or imaginary add up to the degree.
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