Quadratics in Vertex Form:

$$
x \text { - and } y \text { - intercepts }
$$

A quadratic can be written in many forms:

- Vertex Form: $y=a(x-h)^{2}+k$
- Factor Form: $y=a(x-b)(x-c)$
- Standard Form: $y=a x^{2}+b x+c$
- Transformation Form: $y=a(b x-c)+d$

This station will focus on the x - and y-intercepts of quadratic functions. x-intercepts are the point(s) on a quadratic graph that intersect with the \mathbf{x}-axis, and the \mathbf{y}-intercept is the point on a quadratic graph that intersects with the \mathbf{y}-axis.

*Note: taking the square root of a negative number results in an imaginary number, meaning \mathbf{x} has no real solution. Therefore, there are no x-intercepts.

Quadratic functions can have 2, 1, or no x-intercepts. To find x-intercepts using vertex form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$, substitute $\boldsymbol{y}=\mathbf{0}$ into the equation and solve for x .

Example: find the x-intercept(s), if any, of $\boldsymbol{h}(\boldsymbol{x})=(\boldsymbol{x}+\mathbf{1})^{2}-\mathbf{4}$

$$
\begin{gathered}
0=(x+1)^{2}-4 \\
4=(x+1)^{2} \\
\pm \sqrt{4}=x+1 \\
-1 \pm 2=x \\
x=-3,1
\end{gathered}
$$

so the x-intercepts of $\boldsymbol{h}(\boldsymbol{x})$ are $(-3,0)$ and $(1,0)$.

