Quadratics in Vertex Form:

Writing Equations using Vertex Form

A quadratic can be written in many forms:

- Vertex Form: $y=a(x-h)^{2}+k$
- Transformation Form: $y=a(b x-c)+d$
- Factor Form: $y=a(x-b)(x-c)$
- Standard Form: $y=a x^{2}+b x+c$

This station will focus on writing quadratic equations using vertex form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$.

- Start with the general quadratic vertex form
$y=a(x-h)^{2}+k$.
- Find the vertex, in this case $(6,4)$, and substitute it in for (h, k).

$$
y=a(x-6)^{2}+4
$$

- Next, take any other point from the graph $\left(x_{1}, y_{1}\right)$ (not the vertex!) and substitute it in for x and y in your equation. Using the point $(9,-5)$,

$$
-5=a(9-6)^{2}+4
$$

Finally, solve for a

$$
\begin{gathered}
-5=a(9-6)^{2}+4 \\
-5=a(3)^{2}+4 \\
-5=9 a+4 \\
-9=9 a \\
-1=a
\end{gathered}
$$

So, the equation for the parabola is $y=-(x-6)^{2}+4$.

