Quadratics in Vertex Form:

Concavity, Maximums, and Minimums

A quadratic can be written in many forms:

- Vertex Form: $y=a(x-h)^{2}+k$
- Transformation Form: $y=a(b x-c)+d$
- Factor Form: $y=a(x-b)(x-c)$

This station will focus on the concavity, maximums, and minimums. Concavity refers simply to which direction the graph opens. From a graph, concavity can be determined by looking at the graph. From an equation, concavity can be determined by the value of a in $y=a(x-h)^{2}+k$.

$$
y=\frac{1}{2}(x+3)^{2}-2
$$

Since $a=\frac{1}{2}$ you can see the quadratic opens up so it is concave up from $(-\infty, \infty)$

$$
y=-\frac{1}{2}(x+1)^{2}+4
$$

Since $a=\frac{1}{2}$ you can see the quadratic opens up so it is concave down from $(-\infty, \infty)$

The maximum is a point where the quadratic reaches its greatest (largest) y-values. The minimum is a point where the quadratic reaches its least y-value. Conveniently, maximum and minimums are also the vertex when it function is a quadratic. So if the quadratic function is concave up then the vertex is a minimum. If the quadratic function is concave down then the vertex is a maximum.

$$
y=\frac{1}{2}(x+3)^{2}-2
$$

Concave up with vertex $(-3,-2)$ so vertex is a minimum. When does function reach a minimum $x=-3$. What is the minimum value $y=-2$.

$$
y=-\frac{1}{2}(x+1)^{2}+4
$$

Concave down with vertex $(-1,4)$ so vertex is a maximum. When does function reach a minimum $x=-1$. What is the minimum value $y=4$.

