Most graphing up until this point was done graphing x and y values on a coordinate plain. The graph is a visual display of the relationship between the x-values and y values. However, when sketching a graph of $f^{\prime}(x)$ we are creating a model displaying the relationships between the x -values and the rate of change (slope) of the function at a particular value of x.

The graph to the left represents the function $f(x)=3$. Notice the slope of the line is 0 . So if I were to make a table representing the slope of the function at given values of x , my table would be as follows;

x	-2	-1	0	1	2
$f^{\prime}(x)$	0	0	0	0	0

So if we plot the points in the table we get the graph below.

This is the graph of $f^{\prime}(x)$; this graph should make sense if you take $f(x)=$ 3 and derive we get $f^{\prime}(x)=0$ using the power rule

This is a pretty simplistic example: consider the function $f(x)=x^{2}$ if we derive using the power rule we get $f^{\prime}(x)=2 x$.

Each of the orange line is a tangent at a given red point. Notice that each tangent line as a different slope. If we make a table like above we get;

x	-2	-1	0	1	2
$f^{\prime}(x)$	-4	-2	0	2	4

Notice the graph is just the equation $2 x$. This still may be a little hard so let's look at a better example.

Consider the graph:

At $x=-6, x \approx-3.6$, and $x=3$ are the local maximum and minimum this is where I have a horizontal tangent so the slope is 0 which means $f^{\prime}(x)=0$.

x	-7	-6	-5	-3.6	-2	0	2	3	4
$f^{\prime}(x)$	-4	0	1	0	-1	$-1 / 2$	-1	0	4

Now we can draw little tangents to approximate the slope at the other values to finishing filling in the table.
Using the table plot the points on an $f^{\prime}(x)$ and x - value coordinate plane. Then play connect the dots.

One thing that should be even attention is where the function is non-differentiable. This happens at corner points, shape points, or points of discontinuity. Consider the graph:

Let's create a table to help graph the slope function.

x	-6	-5	-3	0	1	2	3	5	6	8
$f^{\prime}(x)$	-1	\emptyset	1	\emptyset	-3	\emptyset	0	\varnothing	$1 / 2$	$1 / 4$

PAY ATTENTION TO THE SLOPE-NO VERTICAL TANGENTS OR TWO DIFFERENT SLOPES ON THE LEFT OR RIGHT SIDE OF A POINT.

Create more points in the table if need more points. Keep the question is the slope really negative, small negative, small positive, or really positive in mind.

