Factoring

What is a Factor? A factor is a number or expression that divides another number or expression without producing a remainder. For example 5 can divide 12 but it will produce a remainder of 2; therefore, 5 is not a factor of 12 .

So when we factor a quadratic, why do we call it factoring? Let's take a look at elementary factoring and factoring a quadratic.
$4 \cdot 31=124$ so $\frac{124}{4}=31$

$$
(x+1)(x+4)=x^{2}+5 x+4 \text { so } \frac{x^{2}+5 x+4}{x+1}=x+4
$$

$$
\begin{array}{r}
31 \\
4 \longdiv { 1 2 4 } \\
-12 \downarrow \\
\hline o 4 \\
\frac{-4}{0}
\end{array}
$$

$$
x+1 \begin{gathered}
x+4 \\
\begin{array}{l}
x^{2}+5 x+4 \\
-x^{2}-1 x \\
4 x+4 \\
-4 x-4 \\
0
\end{array}
\end{gathered}
$$

So why do we factor quadratics and other function? Factoring allows us to determine the x intercepts of a function since in an x-intercept the y-value is always zero like the remainder. ${ }^{* *}$ Make sure to set all equations equal to zero.** There are many different ways to factor. This supportive text explore through examples and will only look at a few different ways to factor depending on the type of function (number of terms in the function).

BINOMIALS - Functions with two terms
$f(x)=-3 x-9=-3(x+3) \rightarrow$ so when does $x+3=0$ when $x-3 \leqslant$ factoring from Algebra 1
$g(x)=4 x^{5}-24 x^{2}=4 x^{2}\left(x^{3}-6\right) \leftarrow$ remember to factoring the greatest common divisor between the term
$\rightarrow 4 x^{3}=0$ and $x^{3}-6=0 \leqslant$ set each factor piece equal to 0 and solve for x
$\rightarrow \mathrm{x}=0 \quad$ and $\quad \mathrm{x}=\sqrt[3]{6} \leftarrow$ theses represent the x -values of the x -intercept
TRINOMIALS- Functions with three terms

- Factoring a trinomial by sight: $f(x)=x^{2}+2 x-24 \rightarrow$ list the factor pairs of 24

$-\mathbf{2 4}$ Sum of Factors	
-1 +24 +23 -2 +12 +10 -3 +8 +5 -4 +6 +2	

Signs of the numbers can be tricky, make sure that the signs add up to the middle term $(-4+6=+2)$, but will multiply to get the sign on the last term ($-\cdot+=-$).

Since $-4+6=2$ make the same value as the middle term we will use these to make the factor pieces $\rightarrow(x-4)(x+6)$ then set each piece equal to 0 and solve for x,

$$
\text { so } x=4 \text { and } x=-6
$$

- Factoring a trinomial using the quadratic formula- this ALWAYS works
- Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where $a \neq 0$.
- $f(x)=3 x^{2}-5 x+1 \rightarrow a=3, b=-5$, and $c=1 \leftarrow$ Now just plug into formula
- $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(1)}}{2(3)}=\frac{5 \pm \sqrt{25-12}}{6}=\frac{5 \pm \sqrt{13}}{6}$
- Factoring a trinomial using completing the square- this ALWAYS works but I don't suggest using it for every trinomial
- This is best illustrated through example: Note leading coefficient or "a" must equal 1
$f(x)=x^{2}-6 x+1 \leftarrow$ this works great when b is even if not you going to get fractions $x^{2}-6 x+1=0$
$x^{2}-6 x+\square=-1+\square \leftarrow \square=\left(\frac{b}{2}\right)^{2}$
$x^{2}-6 x+9=-1+9$
$(x-3)(x-3)=8 \leftarrow(x-3)(x-3)$ is done by factoring from sight this step can be skipped $(x-3)^{2}=8 \quad \leftarrow$ or skips right to this step $\left(x-\frac{b}{2}\right)^{2}=\#$
$x-3= \pm \sqrt{8}= \pm 2 \sqrt{2} \leftarrow$ simplify the radicals
$x=3 \pm 2 \sqrt{2}$
${ }^{* *}$ If leading coefficient is a number other than 1, divide all terms by the coefficient ${ }^{* * *}$

$$
3 x^{2}-4 x+1=0 \quad \text { so } \frac{3}{3} x^{2}-\frac{4}{3} x+\frac{1}{3}=\frac{0}{3} \quad \rightarrow \quad x^{2}-\frac{4}{3} x+\frac{1}{3}=0
$$

This just got really ugly might just want to use quadratic formula instead.

- SPECIAL CASES TO KNOW
- Difference of Squares: $a^{2}-b^{2}=(a-b)(a+b)$
- Example: $9 x^{2}-16 \rightarrow a=3 x$ and $b=4 \rightarrow$ so $(3 x-4)(3 x+4)$
- Difference of Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- Sum of Cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- Cool Manipulation of making something a quadratic:
- Factor $x^{4}-3 x^{2}-4$
\rightarrow let $x^{2}=u$
\rightarrow so $\left(x^{2}\right)^{2}-3\left(x^{2}\right)-4$ becomes $u^{2}-3 u-4$
\rightarrow factors by sight to $(u-4)(u+1)$ which means $\left(x^{2}-4\right)\left(x^{2}+1\right)$
Now you can set each piece equal to zero and solve

