Secant and Tangent Lines

1. Explain the difference between a secant line and a tangent line.
2. For what reason would one want to find the slope of a tangent line at a particular point on a curve? (Hint: use a real world example to help explain)
3. Use the table below to answer the following questions.

t	0	1	5	7	9
$a(t)$	-3	-1	2	8	12

(a) Approximate the rate of change at $=3$.
(b) Which two points would create the best approximation and why if one was to approximate the rate of change at $t=5$.
4. Write the equation to line tangent to the curve $g(x)=\frac{e^{x}+1}{x-2}$ at the point $(1, g(1))$.

Limits in All Forms
5. When do limits exist? When do limits not exist?
6. When a limit approaches an arbitrary value (a number) what graphical characteristics are possible and how do I recognize it through algebraic limits?
7. Evaluate the limits using the graphs of $f(x)$ and $g(x)$ below

a. $\lim _{x \rightarrow 3} g(x)$
b. $\lim _{x \rightarrow-2^{+}} f(x)$
c. $\lim _{x \rightarrow-4^{-}} f(x)$

d. $\lim _{x \rightarrow 1} g(x)$
g. $f(2)$
e. $\lim _{x \rightarrow-2^{-}} g(x)$
f. $\lim _{x \rightarrow 1} g(x)$
h. $g(3)$
8. Evaluate the following limits given the functions
$f(x)=\frac{x-4}{\sqrt{x}-2} \quad g(x)=e^{\sin x} \quad h(x)=-x^{2}-x \quad j(x)=\sqrt{x}-1$
a. $\lim _{x \rightarrow \frac{\pi}{6}} g(x)$
e. $\lim _{x \rightarrow 9}\left(\frac{h}{f}\right)(x)$
b. $\lim _{x \rightarrow 1} 3(f+h)(x)$
f. $\lim _{x \rightarrow 1}\left(\frac{h}{j}\right)(x)$
c. $\lim _{x \rightarrow 4} f(x)$
g. $\lim _{x \rightarrow 1} g(j(x))$
d. $\lim _{x \rightarrow-\pi} f(g(x))$
9. What graphical characteristic is being asked about as x approaches infinity?
10. Distinguish between being asked $\lim _{x \rightarrow \infty} f(x)$ and finding the horizontal asymptote of the function.
11. Show how to solve $\lim _{x \rightarrow \infty} \frac{3 x^{3}+4 x^{2}-x-5}{x^{2}+3}$ using the three different methods.
12. Explain why so many failed the question find the horizontal asymptotes of $f(x)=\frac{1+5^{x}}{3-5^{x}}$
13. Evaluate the following limits:
a. $\lim _{x \rightarrow \infty} \frac{-2 x^{2}+5 x-9}{5 x^{2}-3 x-100}$
b. $\lim _{x \rightarrow-\infty} \frac{-7 x+2}{\sqrt{25 x^{2}-10 x}}$
c. $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{10}}}{x}$
d. $\lim _{x \rightarrow \infty} \frac{x}{\ln (x)}$
e. $\lim _{x \rightarrow \infty} \frac{7 x^{3}-4 x}{9 x^{3}+5 x^{4}}$
14. Identify the horizontal asymptotes of the function, $c(w)=f(g(x))$ where $f(x)=\frac{1-x}{x^{2}}$ and $g(x)=e^{x-1}$.

Continuity will be covered in class Tuesday

